Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.216
Filtrar
1.
Curr Microbiol ; 81(6): 149, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642138

RESUMO

In recent years, green synthesis methods of metallic nanoparticles (MNPs) have been attractive because of the more facile, cheaper, and appropriate features associated with biomolecules in MNPs biosynthesis. This research represented an easy, fast, and environmentally friendly method to biosynthesis of superparamagnetic iron oxide nanoparticles (SPIONPs) and silver nanoparticles (AgNPs) by the Satureja hortensis leaf extract as stabilizer and reducer. The SPIONPs synthesized in co-precipitation method. The biosynthesized SPIONPs and AgNPs were studied their antifungal effects against three Botryosphaeriaceae plant pathogens, Botryosphaeria dothidea, Diplodia seriata, and Neofusicoccum parvum. UV-visible spectra (UV-Vis), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), field emission scanning electron microscopy (Fe-SEM), energy-dispersive X-ray spectroscopy (EDX), and vibrating-sample magnetometer (VSM) analyses were used to evaluate the physicochemical properties and verify the formation of green synthesized SPIONPs and AgNPs. UV-Vis spectra revealed absorption peaks at 243 and 448 nm for SPIONs and 436 nm for AgNPs, respectively. Microscopic and XRD analysis showed that SPIONPs and AgNPs was found spherical in shape with an average particle size of SPIONPs and AgNPs 10 and 12 nm, respectively. The antifungal test against Botryosphaeriaceae species showed that SPIONPs and AgNPs possess antifungal properties against B. dothidea, D. seriata, and N. parvum. However, AgNPs exhibits greater antifungal activity than SPIONPs. The results of the cytotoxicity tests of SPIONs and AgNPs on the MCF-7 cell line showed that AgNPs was significantly more cytotoxic towards the MCF-7 cell line, whereas no significant cytotoxic effect was recorded by SPIONs. Therefore, these biosynthesized MNPs could be substituted for toxic fungicides that are extensively applied in agriculture and contribute to environmental health and food safety.


Assuntos
Compostos Férricos , Nanopartículas Metálicas , Satureja , Prata/farmacologia , Prata/metabolismo , Nanopartículas Metálicas/química , Antifúngicos/farmacologia , Satureja/metabolismo , Nanopartículas Magnéticas de Óxido de Ferro , Difração de Raios X , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Antibacterianos/farmacologia
2.
Int J Pharm ; 655: 124023, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38513815

RESUMO

This study delves into the biomolecular mechanisms underlying the antitumoral efficacy of a hybrid nanosystem, comprised of a silver core@shell (Ag@MSNs) functionalized with transferrin (Tf). Employing a SILAC proteomics strategy, we identified over 150 de-regulated proteins following exposure to the nanosystem. These proteins play pivotal roles in diverse cellular processes, including mitochondrial fission, calcium homeostasis, endoplasmic reticulum (ER) stress, oxidative stress response, migration, invasion, protein synthesis, RNA maturation, chemoresistance, and cellular proliferation. Rigorous validation of key findings substantiates that the nanosystem elicits its antitumoral effects by activating mitochondrial fission, leading to disruptions in calcium homeostasis, as corroborated by RT-qPCR and flow cytometry analyses. Additionally, induction of ER stress was validated through western blotting of ER stress markers. The cytotoxic action of the nanosystem was further affirmed through the generation of cytosolic and mitochondrial reactive oxygen species (ROS). Finally, in vivo experiments using a chicken embryo model not only confirmed the antitumoral capacity of the nanosystem, but also demonstrated its efficacy in reducing cellular proliferation. These comprehensive findings endorse the potential of the designed Ag@MSNs-Tf nanosystem as a groundbreaking chemotherapeutic agent, shedding light on its multifaceted mechanisms and in vivo applicability.


Assuntos
Antineoplásicos , Prata , Embrião de Galinha , Animais , Prata/farmacologia , Prata/metabolismo , Cálcio/metabolismo , Apoptose , Antineoplásicos/farmacologia , Estresse do Retículo Endoplasmático , Espécies Reativas de Oxigênio/metabolismo , Transferrina
3.
Food Chem Toxicol ; 186: 114577, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458532

RESUMO

Silver nanoparticles (AgNPs) have been widely used in biomedicine and cosmetics, increasing their potential risks in neurotoxicity. But the involved molecular mechanism remains unclear. This study aims to explore molecular events related to AgNPs-induced neuronal damage by RNA-seq, and elucidate the role of Ca2+/CaMKII signal and Drp1-dependent mitochondrial disorder in HT22 cells synaptic degeneration induced by AgNPs. This study found that cell viabilities were decreased by AgNPs in a dose/time-dependent manner. AgNPs also increased protein expression of PINK1, Parkin, synaptophysin, and inhibited PGC-1α, MAP2 and APP protein expression, indicating AgNPs-induced synaptic degeneration involved in disturbance of mitophagy and mitochondrial biogenesis in HT22 cells. Moreover, inhibition of AgNPs-induced Ca2+/CaMKII activation and Drp1/ROS rescued mitophagy disturbance and synaptic degeneration in HT22 cells by reserving aforementioned protein express changes except for PGC-1α and APP protein. Thus, AgNPs-induced synaptic degeneration was mediated by Ca2+/CaMKII signal and Drp1-dependent mitochondrial disorder in HT22 cells, and mitophagy is the sensitive to the mechanism. Our study will provide in-depth molecular mechanism data for neurotoxic evaluation and biomedical application of AgNPs.


Assuntos
Nanopartículas Metálicas , Doenças Mitocondriais , Humanos , Prata/toxicidade , Prata/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Mitocôndrias/metabolismo , Nanopartículas Metálicas/toxicidade
4.
Tissue Cell ; 87: 102332, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367325

RESUMO

Protection from liver damage and the repercussion of that harm is thought to be crucial for reducing the number of deaths each year. This work was developed to evaluate the possible role of silver nanocomposite prepared using Nigella sativa (N. sativa) aqueous extract against the hepatic damage brought on by thioacetamide (TAA), with particular attention to how they affect the NF-κß, TNF-α, IL-1ß, and COX-2 signaling pathways. There were seven groups of male Wistar rats used as follows: control, saline, N. sativa aqueous extract (NSAE; 200 mg/kg/d), N. sativa silver nanocomposite (NS-AgNC; 0.25 mg/kg/d), TAA (100 mg/kg; thrice weekly), NSAE + TTA, and NS-AgNC + TAA, respectively. The experiment continued for six weeks. The results showed that NS-AgNPs significantly enhanced liver functions (p<0.05) (albumin, ALP, LDH, AST, total protein, ALT, and globulin) and oxidant/antioxidant biomarkers (p<0.05) (H2O2, MDA, PCC, NO, SOD, CAT, GPx, GR, GST and, GSH), contrasted with TAA group. Moreover, a significant (p<0.05) downregulation of the gene expressions (COX-2, TNF-α, IL-1ß, and NF-κß) was also achieved by using silver nanocomposite therapy. These findings have been supported by histological analysis. Collectively, NS-AgNC exhibits more prominent and well-recognized protective impacts than NSAE in modulating the anti-inflammatory, genotoxicity and oxidative stress effects against TAA-induced liver injuries.


Assuntos
Hepatopatias , Nigella sativa , Masculino , Ratos , Animais , Tioacetamida/toxicidade , Nigella sativa/metabolismo , Prata/toxicidade , Prata/metabolismo , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo , Ciclo-Oxigenase 2 , Peróxido de Hidrogênio/metabolismo , Antioxidantes/metabolismo , Estresse Oxidativo , Fígado/patologia , Hepatopatias/patologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo
5.
Nanotechnology ; 35(19)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38320329

RESUMO

The phytochemicals found inCaralluma pauciflorawere studied for their ability to reduce silver nitrate in order to synthesise silver nanoparticles (AgNPs) and characterise their size and crystal structure. Thunbergol, 1,1,6-trimethyl-3-methylene-2-(3,6,9,13-tetram, Methyl nonadecanoate, Methyl cis-13,16-Docosadienate, and (1R,4aR,5S)-5-[(E)-5-Hydroxy-3-methylpent were the major compounds identified in the methanol extract by gas chromatography-mass spectrum analysis. UV/Vis spectra, Fourier-transform infrared spectroscopy, x-ray diffraction, scanning electron microscope with Energy Dispersive Xâray Analysis (EDAX), Dynamic Light Scattering (DLS) particle size analyser and atomic force microscope (AfM) were used to characterise theCaralluma paucifloraplant extract-based AgNPs. The crystal structure and estimated size of the AgNPs ranged from 20.2 to 43 nm, according to the characterization data. The anti-cancer activity of silver nanoparticles (AgNPs) synthesised fromCaralluma paucifloraextract. The AgNPs inhibited more than 60% of the AGS cell lines and had an IC50 value of 10.9640.318 g, according to the findings. The cells were further examined using fluorescence microscopy, which revealed that the AgNPs triggered apoptosis in the cells. Furthermore, the researchers looked at the levels of reactive oxygen species (ROS) in cells treated with AgNPs and discovered that the existence of ROS was indicated by green fluorescence. Finally, apoptotic gene mRNA expression analysis revealed that three target proteins (AKT, mTOR, and pI3K) were downregulated following AgNP therapy. Overall, the findings imply that AgNPs synthesised from Caralluma pauciflora extract could be used to treat human gastric cancer.


Assuntos
Apocynaceae , Nanopartículas Metálicas , Neoplasias Gástricas , Humanos , Espécies Reativas de Oxigênio/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Apocynaceae/metabolismo , Nanopartículas Metálicas/química , Neoplasias Gástricas/tratamento farmacológico , Regulação para Baixo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Prata/farmacologia , Prata/metabolismo , Apoptose , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/farmacologia , Antibacterianos/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier
6.
Cell Commun Signal ; 22(1): 67, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273312

RESUMO

Lymphatic system distributes in almost all vertebrate tissues and organs, and plays important roles in the regulation of body fluid balance, lipid absorption and immune monitoring. Although CuNPs or AgNPs accumulation has been reported to be closely associated with delayed hatching and motor dysfunction in zebrafish embryos, their biological effects on lymphangiogenesis remain unknown. In this study, thoracic duct was observed to be partially absent in both CuNPs and AgNPs stressed zebrafish larvae. Specifically, CuNPs stress induced hypermethylation of E2F7/8 binding sites on CCBE1 promoters via their producing ROS, thereby leading to the reduction of binding enrichment of E2F7/8 on CCBE1 promoter and its subsequently reduced expression, then resulting in defective lymphatic vessel formation. Differently, AgNPs stress induced down-regulated CCBE1 expression via down-regulating mRNA and protein levels of E2F7/8 transcription factors, thereby resulting in defective lymphatic vessel formation. This study may be the first to demonstrate that CuNPs and AgNPs damaged lymphangiogenesis during zebrafish embryogenesis, mechanistically, CuNPs epigenetically regulated the expression of lymphangiogenesis regulator CCBE1 via hypermethylating its promoter binding sites of E2F7/8, while AgNPs via regulating E2F7/8 expression. Meanwhile, overexpression of ccbe1 mRNA effectively rescued the lymphangiogenesis defects in both AgNPs and CuNPs stressed larvae, while overexpression of e2f7/8 mRNA effectively rescued the lymphangiogenesis defects in AgNPs rather than CuNPs stressed larvae. The results in this study will shed some light on the safety assessment of nanomaterials applied in medicine and on the ecological security assessments of nanomaterials. Video Abstract.


Assuntos
Nanopartículas Metálicas , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Linfangiogênese/genética , Cobre/química , Prata/farmacologia , Prata/química , Prata/metabolismo , RNA Mensageiro/metabolismo
7.
Biomed Pharmacother ; 170: 116090, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38169187

RESUMO

PURPOSE: The aim of the study was to evaluate the effect of silver nanoparticles hydrocolloids (AgNPs) on human corneal epithelial cells. Epithelial cells form the outermost and the most vulnerable to environmental stimuli layer of the cornea in the eye. Mechanical stress, UV radiation, and pathogens such as bacteria, viruses, and parasites challenge the fragile homeostasis of the eye. To help combat stress, infection, and inflammation wide portfolio of interventions is available. One of the oldest treatments is colloidal silver. Silver nanoparticle suspension in water is known for its anti-bacterial anti-viral and antiprotozoal action. However, AgNPs interact also with host cells, and the character of the interplay between corneal cells and silver seeks investigation. METHODS: The human epithelial corneal cell line (HCE-2) was cultured in vitro, treated with AgNPs, and subjected to UV. The cell's viability, migration, calcium concentration, and expression/protein level of selected proteins were investigated by appropriate methods including cytotoxicity tests, "wound healing" assay, Fluo8/Fura2 AM staining, qRT-PCR, and western blot. RESULTS: Incubation of human corneal cells (HCE-2) with AgNP did not affect cells viability but limited cells migration and resulted in altered calcium homeostasis, decreased the presence of ATP-activated P2X7, P2Y2 receptors, and enhanced the expression of PACAP. Furthermore, AgNPs pretreatment helped restrain some of the deleterious effects of UV irradiation. Interestingly, AgNPs had no impact on the protein level of ACE2, which is important in light of potential SARS-CoV-2 entrance through the cornea. CONCLUSIONS: Silver nanoparticles are safe for corneal epithelial cells in vitro.


Assuntos
Nanopartículas Metálicas , Prata , Humanos , Prata/metabolismo , Cálcio/metabolismo , Nanopartículas Metálicas/toxicidade , Receptores Purinérgicos P2Y2/metabolismo , Córnea , Células Epiteliais
8.
Sci Rep ; 14(1): 1779, 2024 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245579

RESUMO

Rice (Oryza sativa) being among the most important food crops in the world is also susceptible to various bacterial and fungal diseases that are the major stumbling blocks in the way of increased production and productivity. The bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae and the sheath blight disease caused by Rhizoctonia solani are among the most devastating diseases of the rice crop. In spite of the availability of array of chemical control, there are chances of development of resistance. Thus, there is a need for the nanotechnological intervention for management of disease in the form of copper and silver nano-composites. The copper (CuNPs) and silver nanoparticles (AgNPs) were synthesized using green route and characterized using different high throughput techniques, i.e., UV-Vis, FT-IR, DLS, XRD, FE-SEM, TEM. The particle size and zeta potential of synthesized CuNPs and AgNPs were found 273 nm and - 24.2 mV; 95.19 nm and - 25.5 mV respectively. The nanocomposite of CuNPs and AgNPs were prepared having particle size in the range of 375-306 nm with improved stability (zeta potential - 54.7 to - 39.4 mV). The copper and silver nanoparticle composites evaluated against Xanthomonas oryzae pv. oryzae and Rhizoctonia solani were found to have higher antibacterial (inhibition zone 13 mm) and antifungal activities (77%) compared to only the copper nanoparticle (8 mm; 62% respectively). Net house trials of nano-composite formulations against the bacterial blight of rice also corroborated the potential of nanocomposite formulation. In silico studies were carried out selecting two disease-causing proteins, peptide deformylase (Xanthomonas oryzae) and pectate lyase (Rhizoctonia solani) to perform the molecular docking. Interaction studies indicatedthat both of these proteins generated better complex with CuNPs than AgNPs. The study suggested that the copper and silver nano-composites could be used for developing formulations to control these devastating rice diseases.


Assuntos
Nanopartículas Metálicas , Oryza , Rhizoctonia , Xanthomonas , Prata/farmacologia , Prata/metabolismo , Nanopartículas Metálicas/química , Cobre/farmacologia , Cobre/metabolismo , Simulação de Acoplamento Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
9.
ScientificWorldJournal ; 2023: 8871491, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38077796

RESUMO

Cut flowers are horticultural products that have great potential to be developed. Efforts to maintain quality and extend the shelf life of cut flowers are very important to obtain a product that is accepted in the market. The main problems of chrysanthemum cut flowers are the leaves easily turning yellow, wilting, and failure to fully open flowers. This study aimed to obtain the best pulsing solution formulation that increases vase life and maintains the freshness of chrysanthemum cut flowers. Pulsing solution treatment was carried out on chrysanthemum cut flowers during the evaluation period. Pulsing solution treatment consisted of control, AgNO3, nano-Ag (NAg), ZnO, and nano-Zn (NZn). The results showed that NAg20 treatment increased the vase life of chrysanthemum cut flowers up to 23 days, which was 19 days longer than the control. Nano-Ag inhibits bacterial growth, flower wilting, color degradation, and carotenoids. In addition, nano-Ag increased the size of the bloom-flower diameter. Considering the results of all postharvest quality parameters mentioned above, NAg20 extends the vase life of chrysanthemum cut flowers.


Assuntos
Chrysanthemum , Nanopartículas Metálicas , Chrysanthemum/metabolismo , Flores/metabolismo , Prata/metabolismo , Prata/farmacologia , Zinco/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-37913699

RESUMO

Color polymorphisms in molluscan shells play an important economic in the aquaculture industry. Among bivalves, shell color diversity can reflect properties such as growth rate and tolerance. In pearl oysters, the nacre color of the donor is closely related to the pearl color. Numerous genes and proteins involved in nacre color formation have been identified within the exosomes of the mantle. In this study, we analyzed the carotenoids present in the mantle of gold- and silver-lipped pearl oysters, identifying capsanthin and xanthophyll as crucial pigments contributing to coloration. Transcriptome analysis of the mantle revealed several differentially expressed genes (DEGs) involved in color formation, including ferric-chelate reductase, mantle genes, and larval shell matrix proteins. We also isolated and identified exosomes from the mantles of both gold- and silver-lipped strains of the pearl oyster Pinctada fucata martensii, revealing the extracellular transition mechanism of coloration-related proteins. From these exosomes, we obtained a total of 1223 proteins, with 126 differentially expressed proteins (DEPs) identified. These proteins include those associated with carotenoid metabolism and Fe(III) metabolism, such as apolipoproteins, scavenger receptor proteins, ß,ß-carotene-15,15'-dioxygenase, ferritin, and ferritin heavy chains. This study may provide a new perspective on the nacre color formation process and the pathways involved in deposition within the pearl oyster P. f. martensii.


Assuntos
Exossomos , Nácar , Pinctada , Animais , Transcriptoma , Proteoma/metabolismo , Pinctada/genética , Nácar/metabolismo , Exossomos/genética , Exossomos/metabolismo , Compostos Férricos/metabolismo , Prata/metabolismo , Ferritinas/genética , Ferritinas/metabolismo
11.
Acta Histochem ; 125(8): 152114, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37980852

RESUMO

High altitude sickness is a life-threatening disease that occurs among acclimatized individuals working or living at a high altitude accompanied by hypobaric hypoxia exposure. The prolonged influence of hypobaric hypoxia on the brain may trigger neuronal damage and cell death due to an oxygen deficiency. The purpose of the current study was to investigate the histomorphological changes in the hippocampus, cerebral cortex, cerebellar cortex, and striatum of the rat's brain following chronic hypobaric hypoxia. Fourteen albino rats were used for this investigation. The animals were exposed to chronic hypobaric hypoxia in the special decompression chamber at an altitude of 7000 m for 7 days. The histological analysis was conducted via toluidine staining and silver impregnation. DNA damage and cell apoptosis were assessed via Feulgen staining. The histochemical assessment revealed increased dark neurons in the hippocampus with cell swelling. Silver impregnation showed increased argyrophilic neurons in the cerebellar cortex, striatum, CA1 subfield of the hippocampus, and cerebral cortex. The cytochemical analysis determined the increased apoptotic cells with hyperchromatic condensation and pyknosis in the hippocampus subfields and cerebral cortex. In addition, it has been observed that hypoxia has resulted in small hemorrhages and perivascular edema within the cerebellar and cerebral cortex. The results indicate brain injury observed in the various parts of the brain towards hypobaric hypoxia, however, the hippocampus showed greater vulnerability against hypoxic exposure in comparison to the striatum, cerebellum, and cerebral cortex. These changes support our insights regarding brain intolerance under conditions of hypoxia-induced oxygen deficiency and its histomorphological manifestations.


Assuntos
Hipóxia , Prata , Ratos , Animais , Prata/metabolismo , Hipóxia/metabolismo , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Hipocampo/metabolismo , Encéfalo/patologia
12.
J Biol Chem ; 299(11): 105331, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37820867

RESUMO

The periplasmic chaperone SilF has been identified as part of an Ag(I) detoxification system in Gram-negative bacteria. Sil proteins also bind Cu(I) but with reported weaker affinity, therefore leading to the designation of a specific detoxification system for Ag(I). Using isothermal titration calorimetry, we show that binding of both ions is not only tighter than previously thought but of very similar affinities. We investigated the structural origins of ion binding using molecular dynamics and QM/MM simulations underpinned by structural and biophysical experiments. The results of this analysis showed that the binding site adapts to accommodate either ion, with key interactions with the solvent in the case of Cu(I). The implications of this are that Gram-negative bacteria do not appear to have evolved a specific Ag(I) efflux system but take advantage of the existing Cu(I) detoxification system. Therefore, there are consequences for how we define a particular metal resistance mechanism and understand its evolution in the environment.


Assuntos
Cobre , Escherichia coli , Sítios de Ligação , Cobre/metabolismo , Escherichia coli/metabolismo , Íons/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Prata/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
13.
Toxicol Appl Pharmacol ; 479: 116726, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37844778

RESUMO

Silver nanoparticles (AgNPs) are widespread in the environment due to the increase in their application e.g. in medicine as part of hard-to-heal wound dressings. Many studies have revealed easy diffusion of AgNPs into deep skin layers through damaged epidermis and contact with e.g. fibroblasts. Therefore, the aim of this study was to evaluate the impact of small-size AgNPs (10 nm) in ppm concentrations on the adipogenesis process in mouse embryo fibroblasts (3T3-L1). The results showed a decrease in the metabolic activity, followed by an increase in the reactive oxygen species (ROS) level in a dose- and time-dependent manner (0-20 ppm). The increased caspase-3 activity was observed only at the highest concentration (20 ppm) of AgNPs. Further analysis showed the ability of the tested NPs to increase the lipid accumulation in adipocytes, similar to ROSI [peroxisome proliferator-activated receptor gamma (PPARγ) agonist], measured by Oil-Red-O staining. Moreover, the analyses evidenced the ability of AgNPs to increase the lipoxygenase activity and malondialdehyde levels, which is probably based on ROS-dependent enhancement of lipid hydroperoxidation. Lastly, a significant increase in the PPARγ, Adiponectin, Resistin, Vegf, and Serpine mRNA expression was shown 6 h after the induction of the differentiation process. Based on the obtained results, it can be concluded that small-size AgNPs increase adipogenesis via ROS- and PPARγ-based mechanisms with potential engagement of crosstalk with the aryl hydrocarbon receptor, which is important due to the widespread application of AgNPs in medicine. However, more studies are needed to elucidate the full mechanism of these NPs in the tested cell model in depth.


Assuntos
Adipogenia , Nanopartículas Metálicas , Animais , Camundongos , Adipogenia/genética , Regulação para Cima , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Prata/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Células 3T3-L1 , Espécies Reativas de Oxigênio/metabolismo , Diferenciação Celular , Lipídeos
14.
Appl Microbiol Biotechnol ; 107(19): 5963-5974, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37552251

RESUMO

Synthesis of nanoparticles (NPs) through plant extracts has been suggested as an effective and nature-friendly method. Paclitaxel is one of the most valuable secondary metabolites with therapeutic uses, and hazelnut has been suggested as one of the sustainable resources for producing this metabolite. In the present study, we synthesized Ag NPs using the ethanolic extract of C. avellana leaves and were characterized using UV-visible, FTIR, XRD, EDX, DLS, SEM, and TEM analyses. In addition, we investigated the effect of green synthesized Ag (GS Ag) NPs (5 and 10 mg/L), para-aminobenzoic acid (PABA) (20 mg/L), and AgNO3 (10 mg/L) on cell viability, physiological characteristics, gene expression, and biosynthesis of secondary metabolites in hazelnut cell cultures. The results showed that 10 mg/L Ag NPs and AgNO3 significantly affected the cell viability, the content of ROS, peroxidation of lipids, antioxidant capacity, secondary metabolite production, and expression pattern of the genes involved in the taxanes biosynthesis pathway in the hazelnut cells. The cytotoxicity increased by increasing the GS Ag NPs concentration from 5 to 10 mg/L, which was associated with reduced membrane integrity and cell viability. Elicitation of the cells with 10 mg/L Ag NPs combined with 20 mg/L PABA (as a precursor) remarkably excited the expression of TAT and GGPPS genes and the production of secondary metabolites as well as paclitaxel. So that the highest expression of TAT and GGPPS genes (3.71 and 3.69) and the highest amount of taxol (230.21 µg g-1 FW) and baccatin (1025.8 µg g-1 FW) were observed in this treatment. KEY POINTS: • For the first time, we assessed and reported the molecular and physiological responses of C. avellana cells to GS Ag NPs, AgNO3, and PABA. • In hazel cells, GS Ag NPs stimulate several physiological and molecular responses. • In addition to increasing antioxidant activity, GS Ag NPs significantly increased the expression of genes involved in the paclitaxel biosynthesis pathway and the production of secondary metabolites.


Assuntos
Corylus , Nanopartículas Metálicas , Paclitaxel , Corylus/metabolismo , Ácido 4-Aminobenzoico/metabolismo , Prata/farmacologia , Prata/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Expressão Gênica
15.
J Biol Chem ; 299(8): 105004, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37394004

RESUMO

The resistance of gram-negative bacteria to silver ions is mediated by a silver efflux pump, which mainly relies on a tripartite efflux complex SilCBA, a metallochaperone SilF and an intrinsically disordered protein SilE. However, the precise mechanism by which silver ions are extruded from the cell and the different roles of SilB, SilF, and SilE remain poorly understood. To address these questions, we employed nuclear magnetic resonance and mass spectrometry to investigate the interplay between these proteins. We first solved the solution structures of SilF in its free and Ag+-bound forms, and we demonstrated that SilB exhibits two silver binding sites in its N and C termini. Conversely to the homologous Cus system, we determined that SilF and SilB interact without the presence of silver ions and that the rate of silver dissociation is eight times faster when SilF is bound to SilB, indicating the formation of a SilF-Ag-SilB intermediate complex. Finally, we have shown that SilE does not bind to either SilF or SilB, regardless of the presence or absence of silver ions, further corroborating that it merely acts as a regulator that prevents the cell from being overloaded with silver. Collectively, we have provided further insights into protein interactions within the sil system that contribute to bacterial resistance to silver ions.


Assuntos
Prata , Transporte Biológico , Íons/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Prata/metabolismo
16.
Mol Biol Cell ; 34(10): ar96, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37405751

RESUMO

The dynamics of living cells can be studied by live-cell fluorescence microscopy. However, this requires the use of excessive light energy to obtain good signal-to-noise ratio, which can then photobleach fluorochromes, and more worrisomely, lead to phototoxicity. Upon light excitation, noble metal nanoparticles such as silver nanoparticles (AgNPs) generate plasmons, which can then amplify excitation in direct proximity of the nanoparticle's surface and couple to the oscillating dipole of nearby radiating fluorophores, modifying their rate of emission and thus, enhancing their fluorescence. Here, we show that AgNPs fed to cells to accumulate within lysosomes enhanced the fluorescence of lysosome-targeted Alexa488-conjugated dextran, BODIPY-cholesterol, and DQ-BSA. Moreover, AgNP increased the fluorescence of GFP fused to the cytosolic tail of LAMP1, showing that metal enhanced fluorescence can occur across the lysosomal membrane. The inclusion of AgNPs in lysosomes did not disturb lysosomal properties such as lysosomal pH, degradative capacity, autophagy and autophagic flux, and membrane integrity, though AgNP seemed to increase basal lysosome tubulation. Importantly, by using AgNP, we could track lysosome motility with reduced laser power without damaging and altering lysosome dynamics. Overall, AgNP-enhanced fluorescence may be a useful tool to study the dynamics of the endo-lysosomal pathway while minimizing phototoxicity.


Assuntos
Nanopartículas Metálicas , Prata , Prata/farmacologia , Prata/química , Prata/metabolismo , Nanopartículas Metálicas/química , Microscopia de Fluorescência , Lisossomos/metabolismo
17.
Int J Nanomedicine ; 18: 2855-2871, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37283715

RESUMO

Introduction: The increasing industrial and biomedical utilization of graphene oxide silver nanoparticles (GO-AgNPs) raises the concern of nanosafety: exposure to the AgNPs or GO-AgNPs increases the generation of reactive oxygen species (ROS), causes DNA damage and alters the expression of whole transcriptome including mRNA, miRNA, tRNA, lncRNA, circRNA and others. Although the roles of different RNAs in epigenetic toxicity are being studied during the last decade, but still we have little knowledge about the role of circle RNAs (circRNAs) in epigenetic toxicity. Methods: Rabbit fetal fibroblast cells (RFFCs) were treated with 0, 8, 16, 24, 32 and 48 µg/mL GO-AgNPs to test the cell viability and 24 µg/mL GO-AgNPs was selected as the experimental dose. After 24 h treatment with 24 µg/mL GO-AgNPs, the level of ROS, malondialdehyde (MDA), superoxide dismutase (SOD), intracellular ATP, glutathione peroxidase (GPx), and glutathione reductase (Gr) were measured in the RFFCs. High-throughput whole transcriptome sequencing was performed to compare the expression of circRNAs, long non-coding RNAs (lncRNA) and mRNA between 24 µg/mL GO-AgNPs-treated RFFCs and control cells. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis was performed to validate the accuracy of circRNA sequencing data. Bioinformatics analyses were performed to reveal the potential functional roles and related pathways of differentially expressed circRNAs, lncRNA and mRNA and to construct a circRNA-miRNA-mRNA interaction network. Results: We found that 57 circRNAs, 75 lncRNAs, and 444 mRNAs were upregulated while 35 circRNAs, 21 lncRNAs, and 186 mRNAs were downregulated. These differentially expressed genes are mainly involved in the transcriptional mis-regulation of cancer through several pathways: MAPK signaling pathway (circRNAs), non-homologous end-joining (lncRNAs), as well as PPAR and TGF-beta signaling pathways (mRNAs). Conclusion: These data revealed the potential roles of circRNAs in the GO-AgNPs induced toxicity through oxidative damage, which would be the basis for further research to determine their roles in the regulation of different biological processes.


Assuntos
Nanopartículas Metálicas , MicroRNAs , RNA Longo não Codificante , Animais , Coelhos , RNA Circular/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Prata/toxicidade , Prata/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Nanopartículas Metálicas/toxicidade , Perfilação da Expressão Gênica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , MicroRNAs/genética , Estresse Oxidativo , Epigênese Genética
18.
Sci Rep ; 13(1): 10397, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37369701

RESUMO

The utilization of nanotechnology and biotechnology for enhancing the synthesis of plant bioactive chemicals is becoming increasingly common. The hairy root culture technique can be used to increase secondary metabolites such as tropane alkaloids. Agrobacterium was used to induce hairy roots from various explants of Hyoscyamus muticus. The effect of nano-silver particles (AgNPs) at concentrations of 0, 25, 50, 100, and 200 mg/L on tropane alkaloids synthesis, particularly hyoscyamine and scopolamine, was studied in transgenic hairy root cultures. Different types of explants obtained from 10-day-old seedlings of H. muticus were inoculated with two strains of Agrobacterium rhizogenes (15,834 and A4). The antimicrobial activity of an ethanolic extract of AgNPs-induced hairy root cultures of H. muticus was tested. The frequency of hairy roots was higher in hypocotyl, root, leaf, and stem explants treated with A. rhizogenes strain A4 compared to those treated with strain 15,834. In transgenic hairy root cultures, AgNPs application at a concentration of 100 mg/L resulted in the highest total tropane alkaloid production, which exhibited broad-spectrum antimicrobial activity. The study demonstrated the potential of nano-silver as an elicitor for promoting the production of target alkaloids in Hyoscyamus muticus hairy root cultures, which exhibit high biological activity.


Assuntos
Alcaloides , Anti-Infecciosos , Hyoscyamus , Nanopartículas Metálicas , Prata/farmacologia , Prata/metabolismo , Tropanos/farmacologia , Tropanos/metabolismo , Alcaloides/farmacologia , Alcaloides/metabolismo , Anti-Infecciosos/farmacologia , Anti-Infecciosos/metabolismo , Raízes de Plantas/metabolismo
19.
Biomed Mater Eng ; 34(5): 385-398, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37125541

RESUMO

BACKGROUND: Calcium phosphates including ß-tricalcium phosphate (ß-TCP) and hydroxyapatite (HAp) have been widely used for bone regeneration application because of their high osteoconductive activities. In addition, various kinds of inorganic ions enhance differentiation, proliferation, and mineralization of osteoblasts. However, information about the effects of silver-doped ß-TCP [ß-TCP (Ag)] and HAp [HAp (Ag)] particles on osteogenic differentiation is not available yet. OBJECTIVE: We focused on the impact of ß-TCP (Ag) and HAp (Ag) particles on the osteogenic differentiation of MC3T3-E1 osteoblast precursor cells. METHODS: MC3T3-E1 osteoblast precursor cells were pre-treated by ß-TCP (Ag) or HAp (Ag). And then the medium was changed to differentiation medium. Subsequently, osteoblast differentiation-related markers were determined. RESULTS: We found that treatment with ß-TCP (Ag) or HAp (Ag) particles increased alkaline phosphatase activity in MC3T3-E1 cells. Expression of osteoblast differentiation-related genes also increased after treatment with ß-TCP (Ag) or HAp (Ag) particles, a response thought to be regulated by zinc finger-containing transcription factor osterix. The ratio of the receptor activator of nuclear factor kappa-B ligand (RANKL) to osteoprotegerin (OPG) was decreased by ß-TCP (Ag) and HAp (Ag) particles. CONCLUSION: Silver doping of ß-TCP and HAp particles is effective for bone regeneration.


Assuntos
Osteogênese , Prata , Prata/farmacologia , Prata/metabolismo , Durapatita/farmacologia , Diferenciação Celular , Fosfatos de Cálcio/farmacologia , Fosfatos de Cálcio/metabolismo , Osteoblastos
20.
J Trace Elem Med Biol ; 79: 127207, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37224744

RESUMO

BACKGROUND: Nanoparticles (NPs) are currently found in the world in the form of natural colloids and volcanic ash, as well as in anthropogenic sources, such as nanofertilizers; however, in the literature, there is still a lack of toxicological evidence, risk assessment, and regulations about the use and environmental impact of NPs in the agroindustrial system. Therefore, the aim of this work was to evaluate alterations caused by the presence of AgNPs during the development of soybean plants. METHODS: The BRS232 non-transgenic (NT) soybean plant and 8473RR (TRR) and INTACTA RR2 PRO (TIntacta) transgenic soybean plants were irrigated for 18 days under controlled conditions with deionized water (control), AgNPs, and AgNO3. The isotopes 107Ag+, 55Mn+, 57Fe+, 63Cu+, and 64Zn+ were mapped in leaves, using 13C+ as an internal standard (IS), and carried out using a laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) technique with a Nd:YAG (213 nm) laser source in the imagagin mode using the LA-iMageS software and also Mathlab. RESULTS: Leaf images showed a low Ag translocation, indicated by the basal signal of this ion. Additionally, the presence of Ag in the ionic form and as NPs altered the homeostasis of 112Cd+, 64Zn+, 55Mn+, 63Cu+, and 57Fe+ in different ways. Quantitative image analysis was performed for Cu. CONCLUSION: The behavior of TRR and TIntacta plants was different in the presence of ionic silver or AgNPs, confirming that the metabolism of these two plants, despite both being transgenic, are different. Through the images, it was observed that the response of plants was different in the face of the same stress conditions during their development.


Assuntos
Terapia a Laser , Nanopartículas Metálicas , Prata/metabolismo , Nanopartículas Metálicas/química , Terapia a Laser/métodos , Homeostase , Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...